Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The advanced capabilities of Large Language Models (LLMs) have made them invaluable across various applications, from conversational agents and content creation to data analysis, research, and innovation. However, their effectiveness and accessibility also render them susceptible to abuse for generating malicious content, including phishing attacks. This study explores the potential of using four popular commercially available LLMs, i.e., ChatGPT (GPT 3.5 Turbo), GPT 4, Claude, and Bard, to generate functional phishing attacks using a series of malicious prompts. We discover that these LLMs can generate both phishing websites and emails that can convincingly imitate well-known brands and also deploy a range of evasive tactics that are used to elude detection mechanisms employed by anti-phishing systems. These attacks can be generated using unmodified or "vanilla" versions of these LLMs without requiring any prior adversarial exploits such as jailbreaking. We evaluate the performance of the LLMs towards generating these attacks and find that they can also be utilized to create malicious prompts that, in turn, can be fed back to the model to generate phishing scams - thus massively reducing the prompt-engineering effort required by attackers to scale these threats. As a countermeasure, we build a BERT-based automated detection tool that can be used for the early detection of malicious prompts to prevent LLMs from generating phishing content. Our model is transferable across all four commercial LLMs, attaining an average accuracy of 96% for phishing website prompts and 94% for phishing email prompts. We also disclose the vulnerabilities to the concerned LLMs, with Google acknowledging it as a severe issue. Our detection model is available for use at Hugging Face, as well as a ChatGPT Actions plugin.more » « less
-
In the context of medical artificial intelligence, this study explores the vulnerabilities of the Pathology Language-Image Pretraining (PLIP) model, a Vision Language Foundation model, under targeted attacks. Leveraging the Kather Colon dataset with 7,180 H&E images across nine tissue types, our investigation employs Projected Gradient Descent (PGD) adversarial perturbation attacks to induce misclassifications intentionally. The outcomes reveal a 100% success rate in manipulating PLIP’s predictions, underscoring its susceptibility to adversarial perturbations. The qualitative analysis of adversarial examples delves into the interpretability challenges, shedding light on nuanced changes in predictions induced by adversarial manipulations. These findings contribute crucial insights into the interpretability, domain adaptation, and trustworthiness of Vision Language Models in medical imaging. The study emphasizes the pressing need for robust defenses to ensure the reliability of AI models. The source codes for this experiment can be found at https://github.com/jaiprakash1824/VLM Adv Attack.more » « less
-
Several face de-identification methods have been proposed to preserve users’ privacy by obscuring their faces. These methods, however, can degrade the quality of photos, and they usually do not preserve the utility of faces, i.e., their age, gender, pose, and facial expression. Recently, advanced generative adversarial network models, such as StyleGAN [ 33], have been proposed, which generate realistic, high-quality imaginary faces. In this paper, we investigate the use of StyleGAN in generating de-identified faces through style mixing, where the styles or features of the target face and an auxiliary face get mixed to generate a de-identified face that carries the utilities of the target face. We examined this de-identification method for preserving utility and privacy by implementing several face detection, verification, and identification attacks and conducting a user study. The results from our extensive experiments, human evaluation, and comparison with two state-of-the-art face de-identification methods, i.e., CIAGAN and DeepPrivacy, show that StyleGAN performs on par or better than these methods, preserving users’ privacy and images’ utility. In particular, the results of the machine learning-based experiments show that StyleGAN0-4 preserves utility better than CIAGAN and DeepPrivacy while preserving privacy at the same level. StyleGAN 0-3 preserves utility at the same level while providing more privacy. In this paper, for the first time, we also performed a carefully designed user study to examine both privacy and utility-preserving properties of StyleGAN 0-3, 0-4, and 0-5, as well as CIAGAN and DeepPrivacy from the human observers’ perspectives. Our statistical tests showed that participants tend to verify and identify StyleGAN 0-5 images easier than DeepPrivacy images. All the methods but StyleGAN 0-5 had significantly lower identification rates than CIAGAN. Regarding utility, as expected, StyleGAN 0-5 performed significantly better in preserving some attributes. Among all methods, on average, participants believe gender has been preserved the most while naturalness has been preserved the least.more » « less
-
null (Ed.)The Web has become the main source for news acquisition. At the same time, news discussion has become more social: users can post comments on news articles or discuss news articles on other platforms like Reddit. These features empower and enable discussions among the users; however, they also act as the medium for the dissemination of toxic discourse and hate speech. The research community lacks a general understanding on what type of content attracts hateful discourse and the possible effects of social networks on the commenting activity on news articles. In this work, we perform a large-scale quantitative analysis of 125M comments posted on 412K news articles over the course of 19 months. We analyze the content of the collected articles and their comments using temporal analysis, user-based analysis, and linguistic analysis, to shed light on what elements attract hateful comments on news articles. We also investigate commenting activity when an article is posted on either 4chan’s Politically Incorrect board (/pol/) or six selected subreddits. We find statistically significant increases in hateful commenting activity around real-world divisive events like the “Unite the Right” rally in Charlottesville and political events like the second and third 2016 US presidential debates. Also, we find that articles that attract a substantial number of hateful comments have different linguistic characteristics when compared to articles that do not attract hateful comments. Furthermore, we observe that the post of a news articles on either /pol/ or the six subreddits is correlated with an increase of (hateful) commenting activity on the news articles.more » « less
An official website of the United States government

Full Text Available